Laboratory 7: UART Receiving and
Transmitting

Experiment Sheet

Purpose

The purpose of this laboratory is to understand the configuration and usage of UART
(Universal Asynchronous Receiver/Transmitter) on the TM4C123GH6PM microcontroller.
This experiment involves setting up UART to transmit and receive data, allowing the
microcontroller to interact with external devices or a terminal emulator. Students will learn
how to:

1. Configure UART for communication.

2. Transmit characters or strings.
3. Receive input from a terminal or other UART-enabled devices.

Essential Knowledge

UART Overview

UART is a serial communication protocol for asynchronous data transmission, typically using

two lines:

e TX (Transmit): Sends data.
e RX (Receive): Receives data.

Key Registers and Their Purposes

—

SYSCTL_RCGCUART: Enables the clock for the UART module.
SYSCTL_RCGCGPIO: Enables the clock for GPIO ports associated with UART
pins.
GPIO_AFSEL: Configures pins for alternate functions (e.g., TX/RX).
GPIO_PCTL: Sets the UART function for selected pins.
UART_CTL: Controls the UART module (enable/disable).
UART IBRD and UART_ FBRD: Set the baud rate (integer and fractional parts).
UART_LCRH: Configures the data frame (e.g., word length, parity, stop bits).
UART _FR: Flag register for monitoring TX and RX buffer status.

o TXFF (Transmit FIFO Full): Indicates the transmit buffer is full.

o RXFE (Receive FIFO Empty): Indicates the receive buffer is empty.
9. UART _DR: Data register for transmitting and receiving data.

i

i e

Steps for UART Configuration
Step 1: Enable Clocks for UART and GPIO

1. Enable the clock for the UART module using the sYSCTL. RCGCUART register.
2. Enable the clock for the GPIO port associated with TX and RX pins using the
SYSCTL_RCGCGPIO register.

Step 2: Configure GPIO Pins for UART

1. Set the TX and RX pins as alternate functions using GPTO AFSEL.
2. Configure the pins for UART operation using GPIO PCTL.
3. Set the TX pin as output and the RX pin as input using GPTO DIR.

Step 3: Configure the UART Module

1. Disable UART: Clear the UART enable bit in uarRT cTL before making changes.
Set Baud Rate: Use the following example for a 16 MHz clock and 9600 baud rate:

UART IBRD 104; // Integer part
UART FBRD = 11; // Fractional part

3. Configure Frame Settings:

o 8-bit data, no parity, 1 stop bit using the UART LCRH register.
4. Enable UART: Set the UART enable bit in UART CTL.

Step 4: Transmit and Receive Data

1. Transmit Data:

o Check the TxFF flag in UART FR to ensure the transmit FIFO is not full.
o Write data to UART DR to send it.
2. Receive Data:

o Check the rxFE flag in UART FR to ensure data is available in the receive FIFO.
o Read data from UART DR to process the received byte.

Tasks For Students
Part A: Display Welcome Message

e Write a UART string transmission routine to send the following message upon startup:

markdown
Kodu kopyala

khkkhkhk kA hhkkhkhrhkhkhkhhkkhkhrhkhkhkhhkkhkhrhkhkhAhrhkhkrhkhkhkhhkkhkhrhkhkhhhkkhdhkhkkxk*k

* *
* ** Welcome to the TM4C1l23 UART Control! ** *
* *

khkkhk kA kA hkhkhkhkhkhkhkhkhkkhkhhkhkhkhhkhkhhkhkhArhkhkrhhkhkhhkkhhrhkhkhkhhkkhkdhkhkdxxk*k

** Available Commands:

-> Type 'R' - Turn ON the RED LED.
-> Type 'G' - Turn ON the GREEN LED.
-> Type 'B' - Turn ON the BLUE LED.
-> Type 'S' - Turn OFF ALL LEDs.

-> Press Enter to submit your command.

Let the LED magic begin! Start typing below:

Part B: Command-Based LED Control

Implement a function that reads a character from UART and processes it:
o Turn on or off LEDs based on the commands above.
o Ifan invalid character is received, do nothing.

Part C: Echo Received Commands

Echo each received command to the terminal for user feedback.

Part D: Switch Feedback (Optional)

Detect SW1 and SW2 presses and transmit appropriate messages via UART:
o SWI: Send "sWl pressed".
o SW2: Send "sw2 pressed".

