
Laboratory 7: UART Receiving and
Transmitting

Experiment Sheet

Purpose

The purpose of this laboratory is to understand the configuration and usage of UART
(Universal Asynchronous Receiver/Transmitter) on the TM4C123GH6PM microcontroller.
This experiment involves setting up UART to transmit and receive data, allowing the
microcontroller to interact with external devices or a terminal emulator. Students will learn
how to:

1. Configure UART for communication.
2. Transmit characters or strings.
3. Receive input from a terminal or other UART-enabled devices.

Essential Knowledge

UART Overview

UART is a serial communication protocol for asynchronous data transmission, typically using
two lines:

 TX (Transmit): Sends data.
 RX (Receive): Receives data.

Key Registers and Their Purposes

1. SYSCTL_RCGCUART: Enables the clock for the UART module.
2. SYSCTL_RCGCGPIO: Enables the clock for GPIO ports associated with UART

pins.
3. GPIO_AFSEL: Configures pins for alternate functions (e.g., TX/RX).
4. GPIO_PCTL: Sets the UART function for selected pins.
5. UART_CTL: Controls the UART module (enable/disable).
6. UART_IBRD and UART_FBRD: Set the baud rate (integer and fractional parts).
7. UART_LCRH: Configures the data frame (e.g., word length, parity, stop bits).
8. UART_FR: Flag register for monitoring TX and RX buffer status.

o TXFF (Transmit FIFO Full): Indicates the transmit buffer is full.
o RXFE (Receive FIFO Empty): Indicates the receive buffer is empty.

9. UART_DR: Data register for transmitting and receiving data.

Steps for UART Configuration

Step 1: Enable Clocks for UART and GPIO

1. Enable the clock for the UART module using the SYSCTL_RCGCUART register.
2. Enable the clock for the GPIO port associated with TX and RX pins using the

SYSCTL_RCGCGPIO register.

Step 2: Configure GPIO Pins for UART

1. Set the TX and RX pins as alternate functions using GPIO_AFSEL.
2. Configure the pins for UART operation using GPIO_PCTL.
3. Set the TX pin as output and the RX pin as input using GPIO_DIR.

Step 3: Configure the UART Module

1. Disable UART: Clear the UART enable bit in UART_CTL before making changes.
2. Set Baud Rate: Use the following example for a 16 MHz clock and 9600 baud rate:

UART_IBRD = 104; // Integer part
UART_FBRD = 11; // Fractional part

3. Configure Frame Settings:
o 8-bit data, no parity, 1 stop bit using the UART_LCRH register.

4. Enable UART: Set the UART enable bit in UART_CTL.

Step 4: Transmit and Receive Data

1. Transmit Data:
o Check the TXFF flag in UART_FR to ensure the transmit FIFO is not full.
o Write data to UART_DR to send it.

2. Receive Data:
o Check the RXFE flag in UART_FR to ensure data is available in the receive FIFO.
o Read data from UART_DR to process the received byte.

Tasks For Students

Part A: Display Welcome Message

 Write a UART string transmission routine to send the following message upon startup:

markdown
Kodu kopyala
**
* *
* ** Welcome to the TM4C123 UART Control! ** *
* *
**

** Available Commands:
 -> Type 'R' - Turn ON the RED LED.
 -> Type 'G' - Turn ON the GREEN LED.
 -> Type 'B' - Turn ON the BLUE LED.
 -> Type 'S' - Turn OFF ALL LEDs.

-> Press Enter to submit your command.

Let the LED magic begin! Start typing below:

Part B: Command-Based LED Control

 Implement a function that reads a character from UART and processes it:
o Turn on or off LEDs based on the commands above.
o If an invalid character is received, do nothing.

Part C: Echo Received Commands

 Echo each received command to the terminal for user feedback.

Part D: Switch Feedback (Optional)

 Detect SW1 and SW2 presses and transmit appropriate messages via UART:
o SW1: Send "SW1 pressed".
o SW2: Send "SW2 pressed".

